Chapter 14 Packages used in the book
The list of packages used when compiling this book is listed below. This can be
very useful when reproducing the examples in this book as results may vary when
different versions of R
and installed packages are used.
## [1] "2021-08-29 15:49:34 UTC"
## R version 4.0.5 (2021-03-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 11 (bullseye)
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.13.so
##
## attached base packages:
## [1] splines parallel stats graphics grDevices utils
## [7] datasets methods base
##
## other attached packages:
## [1] viridis_0.6.1 viridisLite_0.4.0
## [3] USAboundaries_0.3.1 tmap_3.3-2
## [5] spelling_2.2 spatstat_2.2-0
## [7] spatstat.linnet_2.3-0 spatstat.core_2.3-0
## [9] rpart_4.1-15 spatstat.geom_2.2-2
## [11] spatstat.data_2.1-0 smcure_2.0
## [13] SemiPar_1.0-4.2 SDraw_2.1.13
## [15] rmarkdown_2.9 rgeos_0.5-5
## [17] rgdal_1.5-23 RColorBrewer_1.1-2
## [19] mice_3.13.0 maptools_1.1-1
## [21] MixtureInf_1.1 logitnorm_0.8.38
## [23] lme4_1.1-27.1 leaflet_2.0.4.1
## [25] knitr_1.33 KFAS_1.4.6
## [27] JMbayes_0.8-85 rstan_2.21.2
## [29] StanHeaders_2.21.0-7 doParallel_1.0.16
## [31] iterators_1.0.13 survival_3.2-11
## [33] nlme_3.1-152 inlabru_2.3.1
## [35] INLABMA_0.1-11 INLA_21.02.23
## [37] foreach_1.5.1 Matrix_1.3-4
## [39] gridExtra_2.3 ggfortify_0.4.12
## [41] ggplot2_3.3.5 faraway_1.0.7
## [43] drc_3.0-1 dlm_1.1-5
## [45] deldir_0.2-10 DClusterm_1.0-1
## [47] DCluster_0.2-7 MASS_7.3-54
## [49] spdep_1.1-8 sf_1.0-2
## [51] spData_0.3.10 boot_1.3-28
## [53] spacetime_1.2-5 sp_1.4-5
## [55] bookdown_0.22
##
## loaded via a namespace (and not attached):
## [1] utf8_1.2.2 tidyselect_1.1.1
## [3] htmlwidgets_1.5.3 grid_4.0.5
## [5] munsell_0.5.0 codetools_0.2-18
## [7] units_0.7-2 withr_2.4.2
## [9] colorspace_2.0-2 AlgDesign_1.2.0
## [11] rstudioapi_0.13 stats4_4.0.5
## [13] tensor_1.5 polyclip_1.10-0
## [15] coda_0.19-4 LearnBayes_2.15.1
## [17] vctrs_0.3.8 generics_0.1.0
## [19] TH.data_1.0-10 xfun_0.24
## [21] R6_2.5.0 jagsUI_1.5.2
## [23] spatstat.utils_2.2-0 assertthat_0.2.1
## [25] scales_1.1.1 multcomp_1.4-17
## [27] nnet_7.3-16 gtable_0.3.0
## [29] lwgeom_0.2-7 processx_3.5.2
## [31] goftest_1.2-2 sandwich_3.0-1
## [33] rlang_0.4.11 dichromat_2.0-0
## [35] rjags_4-10 broom_0.7.9
## [37] checkmate_2.0.0 inline_0.3.19
## [39] yaml_2.2.1 abind_1.4-5
## [41] crosstalk_1.1.1 backports_1.2.1
## [43] spsurvey_4.1.4 Hmisc_4.5-0
## [45] tools_4.0.5 ellipsis_0.3.2
## [47] raster_3.4-13 jquerylib_0.1.4
## [49] proxy_0.4-26 Rcpp_1.0.7
## [51] base64enc_0.1-3 classInt_0.4-3
## [53] purrr_0.3.4 ps_1.6.0
## [55] prettyunits_1.1.1 tmaptools_3.1-1
## [57] zoo_1.8-9 haven_2.4.1
## [59] cluster_2.1.2 leafem_0.1.6
## [61] magrittr_2.0.1 data.table_1.14.0
## [63] openxlsx_4.2.4 gmodels_2.18.1
## [65] crossdes_1.1-1 mvtnorm_1.1-2
## [67] matrixStats_0.60.0 hms_1.1.0
## [69] evaluate_0.14 xtable_1.8-4
## [71] XML_3.99-0.6 rio_0.5.27
## [73] jpeg_0.1-9 readxl_1.3.1
## [75] compiler_4.0.5 tibble_3.1.3
## [77] KernSmooth_2.23-20 V8_3.4.2
## [79] crayon_1.4.1 minqa_1.2.4
## [81] htmltools_0.5.1.1 mgcv_1.8-36
## [83] Formula_1.2-4 tidyr_1.1.3
## [85] expm_0.999-6 RcppParallel_5.1.4
## [87] DBI_1.1.1 car_3.0-11
## [89] cli_3.0.1 quadprog_1.5-8
## [91] gdata_2.18.0 forcats_0.5.1
## [93] pkgconfig_2.0.3 foreign_0.8-81
## [95] spatstat.sparse_2.0-0 bslib_0.2.5.1
## [97] stringr_1.4.0 callr_3.7.0
## [99] digest_0.6.27 cellranger_1.1.0
## [101] leafsync_0.1.0 intervals_0.15.2
## [103] htmlTable_2.2.1 curl_4.3.2
## [105] gtools_3.9.2 nloptr_1.2.2.2
## [107] lifecycle_1.0.0 jsonlite_1.7.2
## [109] carData_3.0-4 fansi_0.5.0
## [111] pillar_1.6.2 lattice_0.20-44
## [113] loo_2.4.1 plotrix_3.8-1
## [115] pkgbuild_1.2.0 glue_1.4.2
## [117] xts_0.12.1 zip_2.2.0
## [119] leaflet.providers_1.9.0 png_0.1-7
## [121] class_7.3-19 stringi_1.7.3
## [123] sass_0.4.0 latticeExtra_0.6-29
## [125] stars_0.5-3 dplyr_1.0.7
## [127] e1071_1.7-8
Andersen, P. K., O. Borgan, R. D. Gill, and N. Keiding. 1993. Statistical Models Based on Counting Processes. New York: Springer.
Azzalini, A., and A. W. Bowman. 1990. “A Look at Some Data on the Old Faithful Geyser.” Applied Statistics 39: 357–65.
Bachl, Fabian E., Finn Lindgren, David L. Borchers, and Janine B. Illian. 2019. “inlabru: An R Package for Bayesian Spatial Modelling from Ecological Survey Data.” Methods in Ecology and Evolution 10: 760–66. https://doi.org/10.1111/2041-210X.13168.
Baddeley, Adrian, Ege Rubak, and Rolf Turner. 2015. Spatial Point Patterns: Methodology and Applications with R. London: Chapman; Hall/CRC Press. http://www.crcpress.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/.
Bakka, Haakon. 2019. “Small Tutorials on INLA.” https://haakonbakka.bitbucket.io/organisedtopics.html.
Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2014. Hierarchical Modeling and Analysis for Spatial Data. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.v067.i01.
Bates, Douglas, and Martin Maechler. 2019. Matrix: Sparse and Dense Matrix Classes and Methods. https://CRAN.R-project.org/package=Matrix.
Belenky, Gregory, Nancy J. Wesensten, David R. Thorne, Maria L. Thomas, Helen C. Sing, Daniel P. Redmond, Michael B. Russo, and Thomas J. Balkin. 2003. “Patterns of Performance Degradation and Restoration During Sleep Restriction and Subsequent Recovery: A Sleep Dose-Response Study.” Journal of Sleep Research 12 (1): 1–12.
Bivand, Roger, Tim Keitt, and Barry Rowlingson. 2019. Rgdal: Bindings for the ’Geospatial’ Data Abstraction Library. https://CRAN.R-project.org/package=rgdal.
Bivand, Roger, Jakub Nowosad, and Robin Lovelace. 2019. SpData: Datasets for Spatial Analysis. https://CRAN.R-project.org/package=spData.
Bivand, Roger, and Colin Rundel. 2019. Rgeos: Interface to Geometry Engine - Open Source (’Geos’). https://CRAN.R-project.org/package=rgeos.
Bivand, Roger S. 2017. “Revisiting the Boston Data Set - Changing the Units of Observation Affects Estimated Willingness to Pay for Clean Air.” REGION 1 (4): 109–27. http://openjournals.wu.ac.at/ojs/index.php/region/article/view/107.
Bivand, Roger S., Virgilio Gómez-Rubio, and HRue. 2014. “Approximate Bayesian Inference for Spatial Econometrics Models.” Spatial Statistics 9: 146–65.
Bivand, Roger S., Virgilio Gómez-Rubio, and Håvard Rue. 2015. “Spatial Data Analysis with R-INLA with Some Extensions.” Journal of Statistical Software 63 (20): 1–31. http://www.jstatsoft.org/v63/i20/.
Bivand, Roger S., Edzer Pebesma, and Virgilio Gómez-Rubio. 2013. Applied Spatial Data Analysis with R. 2nd ed. New York: Springer.
Bivand, Roger, and David W. S. Wong. 2018. “Comparing Implementations of Global and Local Indicators of Spatial Association.” TEST 27 (3): 716–48. https://doi.org/10.1007/s11749-018-0599-x.
Blair, A. L., D. R. Hadden, J. A. Weaver, D. B. Archer, P. B. Johnston, and C. J. Maguire. 1976. “The 5-Year Prognosis for Vision in Diabetes.” American Journal of Ophthalmology 81: 383–96.
Blangiardo, Marta, and Michela Cameletti. 2015. Spatial and Spatio-Temporal Bayesian Models with R-INLA. Chichester, UK: John Wiley & Sons Ltd.
Blatchford, P., H. Goldstein, Martin C., and W. Browne. 2002. “A Study of Class Size Effects in English School Reception Year Classes.” British Educational Research Journal 28: 169–85.
Bliese, Paul. 2016. Multilevel: Multilevel Functions. https://CRAN.R-project.org/package=multilevel.
Bliss, C. I. 1967. Statistics in Biology. McGraw Hill, New York.
Box, G. E. P., and N. R. Draper. 1987. Empirical Model Building and Response Surfaces. New York, NY: John Wiley & Sons.
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 1976. Time Series Analysis, Forecasting and Control. 3rd ed. Holden-Day.
Box, G., W. Hunter, and J. Hunter. 1978. Statistics for Experimenters. Wiley, New York.
Brooks, S. P., and A. Gelman. 1998. “General Methods for Monitoring Convergence of Iterative Simulations.” Journal of Computational and Graphical Statistics 7: 434–55.
Brooks, Steve, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng. 2011. Handbook of Markov Chain Monte Carlo. Boca Raton, FL: Chapman & Hall/CRC Press.
Buuren, Stef van. 2018. Flexible Imputation of Missing Data. 2nd ed. Boca Raton, FL: CRC Press.
Cai, Chao, Yubo Zou, Yingwei Peng, and Jiajia Zhang. 2012a. “Smcure: An R-Package for Estimating Semiparametric Mixture Cure Models.” Computer Methods and Programs in Biomedicine 108 (3): 1255–60.
———. 2012b. Smcure: Fit Semiparametric Mixture Cure Models. https://CRAN.R-project.org/package=smcure.
Cameletti, Michela, Virgilio Gómez-Rubio, and Marta Blangiardo. 2019. “Bayesian Modelling for Spatially Misaligned Health and Air Pollution Data Through the INLA-SPDE Approach.” Spatial Statistics 31: 100353. https://doi.org/https://doi.org/10.1016/j.spasta.2019.04.001.
Carlin, Bradley P., and Siddhartha Chib. 1995. “Bayesian Model Choice via Markov Chain Monte Carlo Methods.” Journal of the Royal Statistical Society, Series B 57 (3): 473–84.
Carlin, Bradley P., and Thomas A. Louis. 2008. Bayesian Methods for Data Analysis. 3rd ed. Boca Raton, FL: Chapman & Hall/CRC Press.
Carpenter, James, Harvey Goldstein, and Michael Kenward. 2011. “REALCOM-Impute Software for Multilevel Multiple Imputation with Mixed Response Types.” Journal of Statistical Software, Articles 45 (5): 1–14. https://doi.org/10.18637/jss.v045.i05.
Celeux, Gilles, Merrilee, and Christian P. Robert. 2000. “Computational and Inferential Difficulties with Mixture Posterior Distributions.” Journal of the American Statistical Association 95 (451): 957–70.
Cheng, Joe, Bhaskar Karambelkar, and Yihui Xie. 2019. Leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library. https://CRAN.R-project.org/package=leaflet.
Chib, S. 1995. “Marginal Likelihood from the Gibbs Output.” Journal of the American Statistical Association 90 (432): 1313–21.
Chib, S, and I Jeliazkov. 2001. “Marginal Likelihoods from the Metropolis-Hastings Output.” Journal of the American Statistical Association 96: 270–81.
Condit, R. 1998. Tropical Forest Census Plots. Springer-Verlag Berlin Heidelberg.
Condit, R., S. P. Hubbell, and R. B. Foster. 1996. “Changes in Tree Species Abundance in a Neotropical Forest: Impact of Climate Change.” Journal of Tropical Ecology 12: 231–56.
Cox, D. R. 1972. “Regression Models and Life-Tables.” Journal of the Royal Statistical Society. Series B 34 (2): 187–220.
Cressie, N., and N. H. Chan. 1989. “Spatial Modelling of Regional Variables.” Journal of the American Statistical Association 84: 393–401.
Cressie, Noel. 2015. Statistics for Spatial Data. Revised. Hoboken, New Jersey: John Wiley & Sons, Inc.
Cressie, Noel, and Christopher K. Wikle. 2011. Statistics for Spatio-Temporal Data. Hoboken, New Jersey: John Wiley & Sons, Inc.
Cressie, N., and T. R. C. Read. 1985. “Do Sudden Infant Deaths Come in Clusters?” Statistics and Decisions, Supplement Issue 2: 333–49.
Davies, O. L. 1954. The Design and Analysis of Industrial Experiments. Wiley.
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood from Incomplete Data via the EM Algorithm (with Discussion).” Journal of the Royal Statistical Society: Series B 39: 1–38.
Diebolt, Jean, and Christian P. Robert. 1994. “Estimation of Finite Mixture Distributions Through Bayesian Sampling.” Journal of the Royal Statistical Society, Series B 56 (2): 363–75.
Diggle, Peter J. 2013. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. 3rd ed. Chapman; Hall/CRC Press.
Diggle, Peter J., Virgilio Gómez‐Rubio, Patrick E. Brown, Amanda G. Chetwynd, and Susan Gooding. 2007. “Second‐Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data.” Biometrics 2 (63): 550–57.
Fahrmeir, Ludwig, and Thomas Kneib. 2011. Bayesian Smoothing Regression for Longitudinal, Spatial and Event History Data. New York: Oxford University Press.
Faraway, J. 2006. Extending the Linear Model with R. Chapman; Hall, London.
Faraway, Julian. 2016. Faraway: Functions and Datasets for Books by Julian Faraway. https://CRAN.R-project.org/package=faraway.
Faraway, Julian J. 2019a. “Inferential Methods for Linear Mixed Models.” http://www.maths.bath.ac.uk/~jjf23/mixchange/index.html#worked-examples.
———. 2019b. “INLA for Linear Mixed Models.” http://www.maths.bath.ac.uk/~jjf23/inla/.
Frühwirth-Schnatter, Sylvia, Gilles Celeux, and Christian P. Robert, eds. 2018. Handbook of Mixture Analysis. Boca Raton, FL: Chapman & Hall/CRC Press.
Fuentes, M., L. Chen, and J. M. Davis. 2007. “A Class of Nonseparable and Nonstationary Spatial Temporal Covariance Functions.” Environmetrics 19 (5): 487–507. https://doi.org/doi:10.1002/env.891.
Gelman, A. 2006. “Prior Distributions for Variance Parameters in Hierarchical Models.” Bayesian Analysis 1 (3): 515–34.
Gelman, A., X.-L. Meng, and H. Stern. 1996. “Posterior Predictive Assessment of Model Fitness via Realized Discrepancies.” Statistica Sinica 6: 733–807.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. 3rd ed. Boca Raton, FL: Chapman & Hall/CRC Press.
Gelman, Andrew, Jeffrey Fagan, and Alex Kiss. 2007. “An Analysis of the New York City Police Department’s ‘Stop-and-Frisk’ Policy in the Context of Claims of Racial Bias.” Journal of the American Statistical Association 102 (479): 813–23.
Gelman, Andrew, and Jennifer Hill. 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
Gelman, Andrew, Jessica Hwang, and Aki Vehtari. 2014. “Understanding Predictive Information Criteria for Bayesian Models.” Statistics and Computing 24 (6): 997–1016. https://doi.org/10.1007/s11222-013-9416-2.
Gelman, Andrew, and Thomas C. Little. 1997. “Poststratification into Many Categories Using Hierarchical Logistic Regression.” Survey Methodology 23: 127–35.
Gelman, A., and D. B. Rubin. 1992. “Inference from Iterative Simulation Using Multiple Sequences.” Statistical Science 7: 457–511.
Geman, S., and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (6): 721–41.
Gilks, W. R., W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. 1996. Markov Chain Monte Carlo in Practice. Boca Raton, Florida: Chapman & Hall.
Gilley, O. W., and R. Kelley Pace. 1996. “On the Harrison and Rubinfeld Data.” Journal of Environmental Economics and Management 31: 403–5.
Goicoa, T., A. Adin, M. D. Ugarte, and J. S. Hodges. 2018. “In Spatio-Temporal Disease Mapping Models, Identifiability Constraints Affect PQL and INLA Results.” Stochastic Environmental Research and Risk Assessment 3 (32): 749–70.
Goldstein, Harvey. 2003. Multilevel Statistical Models. 3rd ed. Kendall’s Library of Statistics. Arnold, London.
Gómez-Rubio, Virgilio. 2017. “Mixture model fitting using conditional models and modal Gibbs sampling.” arXiv E-Prints, December, arXiv:1712.09566. http://arxiv.org/abs/1712.09566.
Gómez-Rubio, Virgilio, Roger S. Bivand, and Håvard Rue. 2017. “Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation.” arXiv E-Prints, March, arXiv:1703.01273. http://arxiv.org/abs/1703.01273.
———. 2019. “Bayesian model averaging with the integrated nested Laplace approximation.” arXiv E-Prints, November, arXiv:1911.00797. http://arxiv.org/abs/1911.00797.
Gómez-Rubio, Virgilio, Michela Cameletti, and Marta Blangiardo. 2019. “Missing Data Analysis and Imputation via Latent Gaussian Markov Random Fields.” arXiv E-Prints, December, arXiv:1912.10981. http://arxiv.org/abs/1912.10981.
Gómez-Rubio, Virgilio, Michela Cameletti, and Francesco Finazzi. 2015. “Analysis of Massive Marked Point Patterns with Stochastic Partial Differential Equations.” Spatial Statistics 14: 179–96. https://doi.org/https://doi.org/10.1016/j.spasta.2015.06.003.
Gómez-Rubio, Virgilio, and HRue. 2018. “Markov Chain Monte Carlo with the Integrated Nested Laplace Approximation.” Statistics and Computing 28 (5): 1033–51.
Gómez-Rubio, Virgilio, Paula Moraga, John Molitor, and Barry Rowlingson. 2019. “DClusterm: Model-Based Detection of Disease Clusters.” Journal of Statistical Software, Articles 90 (14): 1–26. https://doi.org/10.18637/jss.v090.i14.
Gómez-Rubio, Virgilio, and Francisco Palmí-Perales. 2019. “Multivariate Posterior Inference for Spatial Models with the Integrated Nested Laplace Approximation.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 68 (1): 199–215. https://doi.org/10.1111/rssc.12292.
Gómez-Rubio, Virgilio, Francisco Palmí-Perales, Gonzalo López-Abente, Rebeca Ramis-Prieto, and Pablo Fernández-Navarro. 2019. “Bayesian Joint Spatio-Temporal Analysis of Multiple Diseases.” SORT 43 (1): 51–74.
Haining, Robert. 2003. Spatial Data Analysis: Theory and Practice. Cambridge University Press.
Harrison, David, and Daniel L. Rubinfeld. 1978. “Hedonic Housing Prices and the Demand for Clean Air.” Journal of Environmental Economics and Management 5: 81–102.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning. 2nd ed. New York: Springer.
Held, L., B. Schrödle, and H. Rue. 2010. “Posterior and Cross-Validatory Predictive Checks: A Comparison of MCMC and INLA.” In Statistical Modelling and Regression Structures – Festschrift in Honour of Ludwig Fahrmeir, edited by T. Kneib and G. Tutz, 91–110. Berlin: Springer Verlag.
Helske, Jouni. 2017. “KFAS: Exponential Family State Space Models in R.” Journal of Statistical Software 78 (10): 1–39. https://doi.org/10.18637/jss.v078.i10.
Hoeting, Jennifer, David Madigan, Adrian Raftery, and Chris Volinsky. 1999. “Bayesian Model Averaging: A Tutorial.” Statistical Science 14: 382–401.
Holst, Ulla, Ola Hössjer, Claes Björklund, Pär Ragnarson, and Hans Edner. 1996. “Locally Weighted Least Squares Kernel Regression and Statistical Evaluation of LIDAR Measurements.” Environmetrics 7 (4): 401–16. https://doi.org/10.1002/(SICI)1099-095X(199607)7:4<401::AID-ENV221>3.0.CO;2-D.
Hubbell, S. P., and R. B. Foster. 1983. “Diversity of Canopy Trees in a Neotropical Forest and Implications for Conservation.” In Tropical Rain Forest: Ecology and Management, edited by S. L. Sutton, T. C. Whitmore, and A. C. Chadwick, 25–41. Oxford: Blackwell Scientific Publications.
Hubin, Aliaksandr, and Geir Storvik. 2016. “Estimating the marginal likelihood with integrated nested Laplace approximation (INLA).” arXiv E-Prints, November, arXiv:1611.01450. http://arxiv.org/abs/1611.01450.
Huster, W. J., R. Brookmeyer, and S. G. Self. 1989. “Modelling Paired Survival Data with Covariates.” Biometrics 45: 145–56.
Ibrahim, Joseph G., Ming-Hui Chen, and Debajyoti Sinha. 2001. Bayesian Survival Analysis. Springer.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning. New York: Springer.
Jovanovic, Mladen. 2015. “R Playbook: Introduction to Mixed-Models. Multilevel Models Playbook.” http://complementarytraining.net/r-playbook-introduction-to-multilevelhierarchical-models/.
Juan, P., J. Mateu, and C. Díaz-Avalos. 2010. “Characterizing Spatial-Temporal Forest Fire Patterns.” In METMA V: International Workshop on Spatio-Temporal Modelling. Santiago de Compostela, Spain.
Kalbfleisch, D., and R. L. Prentice. 1980. The Statistical Analysis of Failure Time Data. New York: Wiley.
Kirkwood, J M, M H Strawderman, M S Ernstoff, T J Smith, E C Borden, and R H Blum. 1996. “Interferon Alfa-2b Adjuvant Therapy of High-Risk Resected Cutaneous Melanoma: The Eastern Cooperative Oncology Group Trial Est 1684.” Journal of Clinical Oncology 14 (1): 7–17. https://doi.org/10.1200/JCO.1996.14.1.7.
Knorr-Held, Leonhard. 2000. “Bayesian Modelling of Inseparable Space-Time Variation in Disease Risk.” Statistics in Medicine 19 (17‐18): 2555–67.
Koop, G., and M. F. J. Steel. 1994. “A Decision-Theoretic Analysis of the Unit-Root Hypothesis Using Mixtures of Elliptical Models.” Journal of Business and Economic Statistics 12: 95–107.
Krainski, Elias T., Virgilio Gómez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, Daniel Simpson, Finn Lindgren, and Håvard Rue. 2018. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA. Boca Raton, FL: Chapman & Hall/CRC.
Kruschke, John K. 2015. Doing Bayesian Data Analysis, Second Edition: A Tutorial with R, JAGS, and Stan. 2nd ed. Amsterdam: Academic Press.
Kulldorff, M., W. F. Athas, E. J. Feurer, B. A. Miller, and C. R. Key. 1998. “Evaluating Cluster Alarms: A Space-Time Scan Statistic and Brain Cancer in Los Alamos, New Mexico.” American Journal of Public Health 88: 1377–80.
Lázaro, Elena, Carmen Armero, and Virgilio Gómez-Rubio. 2020. “Approximate Bayesian inference for mixture cure models.” TEST, to appear.
Leroux, B., X. Lei, and N. Breslow. 1999. “Estimation of Disease Rates in Small Areas: A New Mixed Model for Spatial Dependence.” In Statistical Models in Epidemiology, the Environment and Clinical Trials, edited by M Halloran and D Berry, 135–78. New York: Springer-Verlag.
Li, Shaoting, Jiahua Chen, and Pengfei Li. 2016. MixtureInf: Inference for Finite Mixture Models. https://CRAN.R-project.org/package=MixtureInf.
Lindgren, Finn, Håvard Rue, and Joham Lindström. 2011. “An Explicit Link Between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach (with Discussion).” Journal of the Royal Statistical Society, Series B 73 (4): 423–98.
Link, William A., and Mitchell J. Eaton. 2012. “On Thinning of Chains in MCMC.” Methods in Ecology and Evolution 3 (1): 112–15. https://doi.org/10.1111/j.2041-210X.2011.00131.x.
Little, Roderick J. A., and Donald B. Rubin. 2002. Statistical Analysis with Missing Data. 2nd ed. New York: Wiley & Sonc, Inc.
Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2019. Geocomputation with R. Boca Raton, FL: Chapman & Hall/CRC.
MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press.
Marin, Jean-Michel, Kerrie Mengersen, and Christian P. Robert. 2005. “Bayesian Modelling and Inference on Mixtures of Distributions.” In Handbook of Statistics, edited by D K. Dey and C. R. Rao. Vol. 25. Elsevier.
Marshall, E. C., and D. J. Spiegelhalter. 2003. “Approximate Cross-Validatory Predictive Checks in Disease Mapping Models.” Statistics in Medicine 22 (10): 1649–60.
Martins, T. G., D. Simpson, F. Lindgren, and H. Rue. 2013. “Bayesian computing with INLA: New features.” Computational Statistics & Data Analysis 67: 68–83.
McDonald, Trent, and Aidan McDonald. 2019. SDraw: Spatially Balanced Samples of Spatial Objects. https://CRAN.R-project.org/package=SDraw.
McElreath, Richard. 2016. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Boca Raton, FL: Chapman & Hall/CRC Press.
Moberg, Anders, Dmitry M. Sonechkin, Karin Holmgren, Nina M. Datsenko, and Wibjörn Karlén. 2005. “Highly Variable Northern Hemisphere Temperatures Reconstructed from Low- and High-Resolution Proxy Data.” Nature 443: 613–17.
Møller, J., and R. P. Waagepetersen. 2007. “Modern Spatial Point Process Modelling and Inference (with Discussion).” Scandinavian Journal of Statistics 34: 643–711.
Moore, Dirk F. 2016. Applied Survival Analysis Using R. Springer.
Morrison, Kathryn. 2017. “A Gentle INLA Tutorial.” https://www.precision-analytics.ca/blog/a-gentle-inla-tutorial/.
Mullen, Lincoln A., and Jordan Bratt. 2018. “USAboundaries: Historical and Contemporary Boundaries of the United States of America.” Journal of Open Source Software 3 (23): 314. https://doi.org/10.21105/joss.00314.
New York Attorney General. 1999. “The New York Police Department’s ‘Stop and Frisk’ Practices.” https://ag.ny.gov/sites/default/files/pdfs/bureaus/civil_rights/stp_frsk.pdf.
Palmí-Perales, Francisco, Virgilio Gómez-Rubio, and Miguel A. Martínez-Beneito. 2019. “Bayesian Multivariate Spatial Models for Lattice Data with INLA.” arXiv E-Prints, September, arXiv:1909.10804. http://arxiv.org/abs/1909.10804.
Pebesma, Edzer. 2012. “spacetime: Spatio-Temporal Data in R.” Journal of Statistical Software 51 (7): 1–30. http://www.jstatsoft.org/v51/i07/.
———. 2018. “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal 10 (1): 439–46. https://doi.org/10.32614/RJ-2018-009.
Pebesma, E. J. 2004. “Multivariable Geostatistics in S: The Gstat Package.” Computers & Geosciences 30: 683–91.
Petris, Giovanni. 2010. “An R Package for Dynamic Linear Models.” Journal of Statistical Software 36 (12): 1–16. http://www.jstatsoft.org/v36/i12/.
Petris, Giovanni, Sonia Petrone, and Patrizia Campagnoli. 2009. Dynamic Linear Models with R. UseR! Springer-Verlag, New York.
Pettit, L. I. 1990. “The Conditional Predictive Ordinate for the Normal Distribution.” Journal of the Royal Statistical Society. Series B (Methodological) 52 (1): pp. 175–84.
Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. 2018. nlme: Linear and Nonlinear Mixed Effects Models. https://CRAN.R-project.org/package=nlme.
Pinheiro, José C., and Douglas M. Bates. 2000. Mixed-Effects Models in S and S-Plus. Springer, New York.
R Core Team. 2019a. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
———. 2019b. Writing R Extensions. https://cran.r-project.org/doc/manuals/R-exts.html.
Richardson, Sylvia., and Peter J. Green. 1997. “On Bayesian Analysis of Mixtures with an Unknown Number of Components (with Discussion).” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 59 (4): 731–92. https://doi.org/10.1111/1467-9868.00095.
Ritz, C., F. Baty, J. C. Streibig, and D. Gerhard. 2015. “Dose-Response Analysis Using R.” PLOS ONE 10 (e0146021, 12). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146021.
Rizopoulos, Dimitris. 2016. “The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using Mcmc.” Journal of Statistical Software 72 (7): 1–45. https://doi.org/10.18637/jss.v072.i07.
Rue, Håvard. 2009. “INLA: An Introduction.” INLA users workshop May 2009. https://folk.ntnu.no/ingelins/INLAmai09/Pres/talkHavard.pdf.
Rue, Havard, Sara Martino, and Nicolas Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations.” Journal of the Royal Statistical Society, Series B 71 (2): 319–92.
Rue, Håvard, Andrea Riebler, Sigrunn H. Sørbye, Janine B. Illian, Daniel P. Simpson, and Finn K. Lindgren. 2017. “Bayesian Computing with INLA: A Review.” Annual Review of Statistics and Its Application 4 (1): 395–421. https://doi.org/10.1146/annurev-statistics-060116-054045.
Rue, H., and L. Held. 2005. Gaussian Markov Random Fields: Theory and Applications. Chapman; Hall/CRC Press.
Ruiz-Cárdenas, R., E. T. Krainski, and H. Rue. 2012. “Direct Fitting of Dynamic Models Using Integrated Nested Laplace Approximations — INLA.” Computational Statistics & Data Analysis 56 (6): 1808–28. https://doi.org/http://dx.doi.org/10.1016/j.csda.2011.10.024.
Ruppert, David, M. P. Wand, and R. J. Carroll. 2003. Semiparametric Regression. New York: Cambridge University Press.
Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. London: Chapman & Hall.
Schonbeck, Y., H. Talma, P. van Dommelen, B. Bakker, S. E. Buitendijk, R. A. Hirasing, and S. van Buuren. 2013. “The World’s Tallest Nation Has Stopped Growing Taller: The Height of Dutch Children from 1955 to 2009.” Pediatric Research 73 (3): 371–77.
Schonbeck, Y., H. Talma, P. van Dommelen, B. Bakker, S. E. Buitendijk, R. A. Hirasing, and S. van Buuren. 2011. “Increase in Prevalence of Overweight in Dutch Children and Adolescents: A Comparison of Nationwide Growth Studies in 1980, 1997 and 2009.” PLoS ONE 6 (11): e27608.
Simpson, Daniel. 2016. “INLA for Spatial Statistics. Grouped Models.” http://faculty.washington.edu/jonno/SISMIDmaterial/8-Groupedmodels.pdf.
Simpson, Daniel, Janine B. Illian, S. H. Sørbye, and Håvard Rue. 2016. “Going Off Grid: Computationally Efficient Inference for Log-Gaussian Cox Processes.” Biometrika 1 (103): 49–70.
Simpson, D. P., H. Rue, A. Riebler, T. G. Martins, and S. H. Sørbye. 2017. “Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors.” Statistical Science 32 (1): 1–28.
Sørbye, Sigrunn H., Janine B. Illian, Daniel P. Simpson, David Burslem, and Håvard Rue. 2019. “Careful Prior Specification Avoids Incautious Inference for Log-Gaussian Cox Point Processes.” Journal of the Royal Statistical Society: Series C (Applied Statistics) 68 (3): 543–64. https://doi.org/10.1111/rssc.12321.
Sørbye, Sigrunn Holbek. 2013. Tutorial: Scaling Igmrf-Models in R-Inla.
Sørbye, Sigrunn Holbek, and Håvard Rue. 2014. “Scaling Intrinsic Gaussian Markov Random Field Priors in Spatial Modelling.” Spatial Statistics 8: 39–51. https://doi.org/https://doi.org/10.1016/j.spasta.2013.06.004.
Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van der Linde. 2002. “Bayesian Measures of Model Complexity and Fit (with Discussion).” Journal of the Royal Statistical Society, Series B 64 (4): 583–616.
Stephens, Matthew. 2000. “Dealing with Label Switching in Mixture Models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 62 (4): 795–809. https://doi.org/10.1111/1467-9868.00265.
Tennekes, Martijn. 2018. “tmap: Thematic Maps in R.” Journal of Statistical Software 84 (6): 1–39. https://doi.org/10.18637/jss.v084.i06.
Terry M. Therneau, and Patricia M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. New York: Springer.
Therneau, Terry M. 2015. A Package for Survival Analysis in S. https://CRAN.R-project.org/package=survival.
Tierney, Luke, and Joseph B. Kadane. 1986. “Accurate Approximation for Posterior Moments and Marginal Densities.” Journal of the Americal Statistical Association 81 (393): 82–86.
Turner, Rolf. 2019. Deldir: Delaunay Triangulation and Dirichlet (Voronoi) Tessellation. https://CRAN.R-project.org/package=deldir.
Ugarte, María Dolores, Aritz Adin, and Tomás Goicoa. 2016. “Two-Level Spatially Structured Models in Spatio-Temporal Disease Mapping.” Statistical Methods in Medical Research 25 (4): 1080–1100. https://doi.org/10.1177/0962280216660423.
Ugarte, M. D., A. Adin, T. Goicoa, and A. F. Militino. 2014. “On Fitting Spatio-Temporal Disease Mapping Models Using Approximate Bayesian Inference.” Statistical Methods in Medical Research 23: 507–30. https://doi.org/10.1177/0962280214527528.
van Buuren, Stef, and Karin Groothuis-Oudshoorn. 2011. “mice: Multivariate Imputation by Chained Equations in R.” Journal of Statistical Software 45 (3): 1–67. https://www.jstatsoft.org/v45/i03/.
Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with S. Fourth. New York: Springer.
Wand, Matt. 2018. SemiPar: Semiparametic Regression. https://CRAN.R-project.org/package=SemiPar.
Wang, Xiaofeng, Yu Yue Ryan, and Julian J. Faraway. 2018. Bayesian Regression Modeling with Inla. Boca Raton, FL: Chapman & Hall/CRC.
Watanabe, S. 2013. “A Widely Applicable Bayesian Information Criterion.” Journal of Machine Learning Research 14: 867–97.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
Wikle, C. K., L. M. Berliner, and N. Cressie. 1998. “Hierarchical Bayesian Space-Time Models.” Environmental and Ecological Statistics 5: 117–54.
Wutzler, Thomas. 2018. Logitnorm: Functions for the Logitnormal Distribution. https://CRAN.R-project.org/package=logitnorm.
Xie, Yihui. 2016. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://github.com/rstudio/bookdown.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.
Zucchini, W., I. L. MacDonald, and R. Langrock. 2016. Hidden Markov Models for Time Series: An Introduction Using R. 2nd ed. CRC Press.